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A General Method to Simulate Noise in Oscillators

Based on Frequency Domain Techniques
Werner Anzill and Peter Russer

Abstract—A perturbation theory for simulating the noise be-
havior in free running microwave oscillators based on a piece-

wise harmonic balance technique is outlined. The single-side-

band phase noise of an oscillator is derived from the system

equations describing the deterministic and stochastic behavior.
The method is neither limited to a certain circuit topology nor

to certain types of noise sources. The theory is applied to a
planar integrated microwave oscillator at 14 GHz to demon-

strate the applicability y of the theory. Simulated and measured
single-sideband phase noise agree within the accuracy of mea-
surement.

I. INTRODUCTION

T HE SIMULATION of the spectral behavior of micro-

wave and millimeter-wave circuits is of fundamental

importance due to the technology of monolithic integra-

tion and the limitations of tuning the circuit after its in-

tegration. Besides the signal properties the noise behavior

is essential for the design of microwave oscillators. While

the determination of the steady state of oscillators in the

time and frequency domain is state of the art [ 1]-[5] and

already implemented in modern computer-aided design

tools, this is not so for the simulation of the noise behav-

ior. For signal and noise analysis of linear circuits the

correlation method is used [6]–[ 10]. These methods are

not suitable to analyze oscillator circuits, since the non-

linearities affect the output characteristics of an oscillator.

A traditional technique to describe noise in oscillating

systems [11], [12] is based on an approximation of a

slowly varying envelope of the oscillator signal. Closed

formulas for the steady state and for the noise spectra of

oscillators can be found and a good qualitative and some-

times quantitative understanding of the noise behavior is

achieved. But the applicability of the theory is restricted

to simplified oscillator models, e.g., Van der Pol oscil-

lators. A model of a linear feedback oscillator is used in

[13] and a formula for the phase noise is derived with the

noise figure of the transistor, the signal power and the

loaded quality factor of the resonator as the characteris-

tics. In both methods noise spectra are derived from a

linearized, i.e., small-signal analysis, despite the fact that
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a stable oscillation is only possible in a nonlinear system.

Therefore the conversion of a baseband noise to the har-

monics and the modulation of the noise sources by the

large-signal steady state are determined from a small-sig-

nal analysis.

A method to calculate the general correlation spectrum

of oscillators in the time domain with white and f - “-noise

sources has already been published [14]. The oscillator

circuit is described by a lumped circuit model containing

the inherent noise sources of the oscillator. This method

is based on the solution of the Langevin equations, which

describe the stochastic behavior. There are no restrictions

on the complexity and the nonlinearities contained in the

model. The modulation of the noise sources by the un-

perturbed oscillation are taken into account.

For microwave oscillators with distributed elements,

mainly frequency domain methods are used due to the dif-

ficulty of describing distributed elements in the time do-

main. The calculation of the oscillator’s noise behavior in

the frequency domain is based on conversion matrices

[15], [16], as used for mixers [17] -[20]. The noise signals

are described as a superposition of several sinusoidal time

functions with different frequencies, The shortcoming of

[15] is that only the fundamental frequency of the signal

is taken into account and in [16] the nonlinear noise cur-

rent sources are connected across the nonlinearities that

are only one-ports. Both methods require an inversion of

the conversion matrix that is ill conditioned in the vicinity

of the steady state and the frequency of oscillation. This

is an inherent problem of oscillators due to the lack of

phase reference. Therefore the phase noise computations

of complex oscillators, which have to be done numeri-

cally, turn out to be very sensitive to numerical errors.

We propose an approach based on a piecewise har-

monic balance technique to calculate the single-sideband

phase noise of oscillators that is neither limited to a cer-

tain kind of topology of the circuit nor to special charac-
teristics of the noise sources. In particular, the technically

important computation of the oscillator noise spectra near

the frequency of oscillation is an inherently ill condi-

tioned problem when performed by direct inversion of the

corresponding linearized equations [21]. In oscillators the

noise sources are small compared with the signals, if the

oscillator is not operated in the neighborhood of a bifur-

cation point. Therefore, the system equations are linear-

ized around the steady state. Due to the lack of phase ref-

erence in oscillators the resulting Jacobian is singular at
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the steady state [22] and ill conditioned for a small fre-

quency deviation from the carrier frequency, where we

are interested in the phase noise. We overcome this prob-

lem by using an eigenvalue decomposition of the Jaco-

bian, where the small eigenvalue responsible for the bad

condition of the matrix is taken into account. The corre-

lation spectrum of the state variable fluctuations is de-

rived, where the phase noise, the amplitude noise, and the

amplitude phase correlation spectrum are included. The

phase noise is generated by a random phase shift of the
unperturbed steady-state signal. Since in oscillators the

phase noise is the dominant noise phenomenon we con-

sider only the phase noise correlation spectrum. A simple

equation for the simulation of the single-sideband phase

noise L (fJ can be derived that allows to compute L (fJ

in a numerically stable way [23], [24].

In Section II of this paper we formulate the system

equations describing the steady state. The method of the

noise analysis is outlined in Section III and an expression

for the single-sideband phase noise is derived. In Section

IV we apply the theory to a planar integrated free running

microwave oscillator at 14 GHz.

II. STEADY STATE

To analyze the noise behavior of oscillators we first

compute the steady state without the noise sources. As

usual for the piecewise harmonic balance method the cir-

cuit is divided into a nonlinear and a linear subcircuit. The

nonlinear subcircuit is described by the admittance or

impedance matrix. The n components of the vector X are

the n state variables that ,uniquely determine the state of

the nonlinear circuit connected with the admittance or

impedance of the linear circuit.

X= (XI X2””” xn)T. (1)

Each state variable is considered to be periodic at the

steady state. Hence xi(t) is expressed by a Fourier expan-

sion with the coefficients X,, 1. The frequency range con-

sidered is limited to k harmonics,

Xi = (Xi,_~ Xi,-~+~ “ “ “ X,, ~ “ “ “ Xi,+~)T (2)

where Xi e C2k~ 1.

Applying Kirchhoffs current and voltage law we obtain

a set of n nonlinear equations “F(X, co) for the state vari-

ables X and the frequency of ‘oscillation o. The steady

state is defined by the nonlinear system equation

F(XO, LOO)= O. (3)

This nonlinear system of equations (3) has an infinite

number of solutions XO, because the phase of oscillation

is arbitrary for free running oscillators. To obtain a unique

solution the phase has to be fixed by choosing a real or

imaginary part of a Fourier coefficient to be zero.

III. NOISE ANALYSIS

A. Fluctuations of the State Variables

Taking the noise sources into account, we obtain a non-

linear system of equations including noise.

F(XT, co, NT) = O. (4)

The noise vector NT consists of r noise sources at k har-
r yk+ 1) This system of eqUationSmonies, so that NT c C ( .

is described in detail for a nodal harmonic balance system

in [21], [24]. We use an ansatz where all Fourier coeffi-

cients and the frequency of oscillation are noisy and there-

fore all possible noise processes including the upconver-

sion of 1/~” noise sources and the AM to PM conversion

can be taken into account. The index T denotes the time

windowed signals as amplitude spectra of random signals

may only be defined for time limited probes of the signals

[10]. Calculation of the correlation spectra T ~ m has to

be performed again after the ensemble averaging.

In electrical oscillators noise signals are very small

compared with the state variables. Therefore it is suffi-

cient to take the noise sources into account up to first or-

der,

F(XT, w) + G(X}, u) “ NT = O (5)

where G(X}, w) ● Cnf2~+ ‘) x ‘(2~+ 1) and

G (X$, (J) =
aF (xT, u)

aN~
(6)

Xr=X}, N~=(I

The matrix G (X}, ~) denotes the contribution of the noise

sources NT to each equation in (5).

Due to the small noise signals the state variables and

the frequency of oscillation deviate only by a smlall

amount from the steady state,

]18xT(@)]l<< I]x:(Lo)II ; u,n << 0+. (7)

Thus the system of nonlinear equations can be linearized

around the steady state,

J(X}, LO)($XT + G (Xl, OJ)NT = O (8)

with J (X}, ~) e C*(*k + 1)x ‘(2k+‘) and

J (X!,LJ) =
aF (x~, cd)

axT “XT=X;

(9)

The matrix J (X}, a) represents the Jacobian that contains

all information about the noise signals mixed with the

spectral components of the state variables X}. The Jaco-

bian is singular at the steady-state X} and UO. That means
one eigenvalue is zero, which is denoted Al = O. There-

fore a distortion dX~ exists, that X; + 6X~ is also a so-

lution of (3). In other words X) + 8XT deviates from the

steady-state solution of the oscillator only by a small phase

shift. These stochastic phase deviations constitute the

phase noise.

B. Solution of the System Equations Including Noise

The Jacobian is singular at the steady state and for a

small frequency deviation f~ of the carrier frequency the

deviations of the matrix elements are small and the con-

dition number of the Jacobian remains high [25]. The
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condition number of a matrix can be approximated by the

ratio of the largest to the smallest eigenvalue. The largest

eigenvalue is much larger than the frequency of oscilla-

tion ~o, because it is related to the fastest process of the

system. The smallest eigenvalue is in the order of the fre-

quency deviation~~, as we will show later in (27). There-

fore the condition number cond of the Jacobian is much

larger than the ratio of the carrier frequency to the fre-

quency deviation of interest [23].

Cond ~J[x& z; ~h + ~ ~1) >> L
m

fnl “
(lo)

That means the steady state of oscillators has to be deter-

mined to a much higher precision than the inverse of the

condition number to achieve a relative error smaller than

1 [26]. Considering a 10 GHz oscillator and a frequency

deviation of, e.g., fit, = 10 kHz the condition number is

much larger than 10c.

To overcome the numerical problems the Jacobian is

linearized at the carrier frequency with respect to the fre-

quency

J (X$, LO)= J (X}, tie) + tim “ J. (X}, ma) (11)

with abbreviation

Then, an

with left-

complete

(12)
Ocd Iu=uo

eigenvalue decomposition [27] of the Jacobian

and right-sided eigenvectors is used. Thus the

correlation spectra can be calculated in a nu-

merically stable way.

First we want to analyze the unperturbed Jacobian

J (XI, OJo).The left- and right-sided eigenvectors of the

Jacobian are denoted with V] and W, and the eigenvalues

with Aj and Ai respectively.

V; “ J(X~, 0.) = Aj’ . V:; v] ~ cnC2kf 1) (13)

J(x)> @o) - W, = Ar “ W,; W,= C“(’k+ ‘). (14)

The eigenvalues of the Jacobian are equal for a set of left-

and right-sided eigenvectors.

~:=~:=~ 1 for i = j. (15)

The left- and right-sided eigenvectors satisfy the ortho-

gonality relations [25]:

[

1 i=j

V;” W,=8 ~ with 6V = (16)
o i#j.

These equations mean, e.g., the eigenvector V, is ortho-

gonal to all right-sided eigenvectors Wi with the excep-

tion of W ~. The eigenvectors corresponding to the eigen-

value k] = O are denoted with VI and W,. These are the

eigenvectors that we will need later on.

The eigenvector W, is determined by the steady state

[21], [24].

WI = juo KXt (17)

where K = Rn(2k+ 1)‘“(’k+ 1) is a matrix that has only non-

vanishing diagonal elements consisting of the number of

the harmonics.

K=

–k

- (k

1 0

1) o

+k

–k

A

(18)

The physical meaning of the vectors V, and WI is il-

luminated in the time domain; see Fig. 1.

W1(f) o— ● WI is the tangent vector to the steady-

state X“ (t) and VI (t) O— ● VI is the normal vector de-

fining a plane #that is mapped onto itself by the unper-

turbed flux of the linearized set of differential equations

(Poincar6 map), see [14].

The vector VI is determined by the definition

J+ (X}, coo) . VI = O (19)

which is a linear homogeneous system of equations and

can be solved with a standard LU-decomposition. The

length of the vector V, has to be normalized to satisfy

(16).

IIV,IIZ = llcooK@l~l (20)

The eigenvectors Wi are a complete base of the state

space and due to (16) a multiplication of V: with a vector

within the state space is a projection onto the comple-

mentary space of the plane w. That means, the projection

operator W lV/ applied to a vector, e.g., named z =

E;=, ai W,, results in a vector tangential to the limit cycle

with a length of the coefficient al. So if this projection

operator WIV[ is applied to the noise sources in the state

space G (X$, a) NT the contributions of the noise sources

that cause a phase shift of the unperturbed steady state are

separated. This will be shown by an algebraic derivation

in the following part of the paper.

For a small frequency deviation of o,. = 27rfn the de-

viations of the elements of the Jacobian are small. There-

fore the deviations of the eigenvalues and eigenvectors

are small too, because they

the matrix elements [27].

A: = h, + ah~;

v;’ = v: .+ ~v+.
1~

W: = Wi + 8W,;

are continuous functions of

16A,I << Ih,l (21)

Ilavl\l’ << I]V,112 (22)

l]8Wi\lZ << IIW,IIZ. (23)

The eigenvalues and eigenvectors of the perturbed Jaco-

bian J (X}, u) are denoted with a prime. It is sufficient to

consider the deviations of the eigenvalues and eigenvec-

tors up to the first order in am.
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I,

B

Fig. 1. Two-dimensional phase space with a limit cycle and eigenvectors

v, (t) and w, (t).

6Ai= CJMV~J. (x}, UO) Wi (24)

n(2k + 1)

6Wi= Z z
l=l,l*ihi — Al

“ V: J. (x!, LOo)Wi “ W1 (25)

n(2k + 1)

13vj= x ~
l=l,l#j Aj – Al

o V; J. (Xl, Uo)W1 o V1. (26)

Therefore the eigenvalue Ai of the perturbed Jacobian

J (Xl, u) is given with (17) by

h! = bhl = 2z~~ V: Jo (X!, Uo)j27rfo KX}. (27)

The inverse of the Jacobian J- 1(X}, u) is represented by

an eigenvalue decomposition with the eigenvalues and

left- and right-sided eigenvectors of the Jacobian J (X},
u).

J-l(X}, u) = i:l ; W/V:+. (28)
1

This inversion will not be calculated due to the bad con-

dition of the Jacobian. We derive this equation to calcu-

late the correlation spectrum of the state variable fluctua-

tions. Later on we take into account the special eigenvalue

hi that causes the bad condition of the matrix and the

problems of a numerical inversion. The state variable

fluctuations are given by

n(2k+ 1)

~XT = i~l ; W{ V/+ o (–G(XO, U)NT). (29)
i

C. Correlation Spectrum of the Oscillator Noise

The correlation spectra of the state variables Cax(f)
and the noise sources C~ (~) are given by

Cax(f) = yin ;T (ax.(f) ax; (.0) (30)

CN(f) = ~+mo #T (N~(j)N~ (f )) I(31)

where the brackets denote the ensemble average. The lcor-

relation spectra of the state variables are derived using

(30), (31) and the equation of the state variable fluctua-

tions (29)
n(2k+ 1) n(2k+ 1)

“ v’ cGN(f )V; “ Ww; + 1(32)

with abbreviation

CG~(f ) = G(X~, ti)C~(f)G+ (X}, co). (33)

The approximations of (24)-(26) for the eigenvalues and

eigenvectors of the perturbed Jacobian are used to derive

the correlation spectra of the stat variable fluctuations.

The term with the major contribution to the correlation

spectrum is the term with i = j = 1 due to the small

eigenvalue h; = 6A1 given in (27). This term denotes, as

already described, the phase noise of oscillators. As the

perturbation of the eigenvectors 8W1 and 6V1 are in the

order of o~ and therefore small compared with the unper-

turbed eigenvectors, they are negligible.

V/ CG~(f)V1 “ KXOXO+ K
(34)tax(f) = (2Tfm)2\v~J@(X0, ~o)KX012 “

Due to the special situation of the eigenvalue h[ and the

eigenvectors V1 and W 1 the terms with i = 1 and j # 1

or i # 1 and j = 1 in (32) denote the amplitude phase

correlation spectra. Finally the terms with i # 1 and ,j #

1 in (32) represent the amplitude noise. These noise con-

tributions are small compared with the phase noise due to
the larger eigenvalues and are not taken into account in

this paper.

D. Single-Sideband Phase Noise L (fro)
The single-sideband phase noise L ( f~) is the ratio be-

tween the noise power in a sideband of bandwidth II Hz
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at a deviation f~ = f – f. from the carrier frequency and

the total signal power Ps. L ( f~) is equal for all state vari-

ables and therefore we can choose any state variable x, to

calculate the single-sideband phase noise.

L(fJ = P~j (f~)/P~i. (35)

In order to obtain the single-sideband phase noise at the

fundamental frequency the matrix element corresponding

to the i th state variable is chosen that denotes the noise

power at the fundamental frequency. We have to select

the element X:, X~~ = IX! ~12 of the matrix KXO XO+ K
and obtain for the noise power P~i ( fn) in a 1 Hz band-

width

p~i ( f~) = 2C8X( f. + f~)i, 1 . RU =

RU is a resistance of normalization. The signal power of

the fundamental frequency is represented by

Psi = 21X~l\2 “ RU. (37)

With the definition of the single-sideband phase noise in

(35) we derive an equation for L ( f~) using the approxi-

mations of the noise power (36) and the signal power (37).

1 VT cGN(fi + fm)v,

‘(fro) = (27rfm)2 “ lV:Ju(XO, 2Tfi)KX012 “ ’38)

VI is the solution of a homogeneous linear system of

equations, J+ (U!, 27rfo) VI = O, which can be obtained

very easily with a standard LU-decomposition of the Ja-

cobian. The derivative of the Jacobian with respect to the

frequency JO(U”, 2mfo) can be calculated numerically, as

we will show in our example. The denominator of the

second term is constant for different frequency deviations

and needs to be calculated only once. The numerator con-

sists of the correlation spectrum of the noise sources mul-

tiplied with the vector V: from the left side and with VI
from the right side. As we already described, this multi-

plication is a projection of all noise sources of the state

space onto the tangent vector to the steady state. That

means the vector VI selects the contributions of the noise

sources that are tangential to the steady state and therefore

induce the phase noise.

The noise sources, 1/~”- and white noise sources. and
their modulation are taken into account in the correlation
matrix CGN. The correlation spectrum of a 1/f “-noise

source decreases with (10 o a) dB /frequency decade and

therefore L ( f~) decreases at [20 + (10 “ a)] dB /decade.

The single-sideband phase noise decreases at 20

dB /decade due to the white noise sources, because the

correlation spectra of white noise sources are constant with

respect to the frequency.

This method results in a numerical stable calculation of

the phase noise of free running oscillators, where all ef-

fects of the noise sources converted with the harmonic

signals are taken into account.

IV. EXAMPLE

A. Simulation and Measurement of the Single-Sideband

Phase Noise of a Planar Integrated Microwave

Oscillator at 14 GHz

This new method is applied to a planar [28] integrated

microwave oscillator with a GaAs MESFET at 14 GHz to

demonstrate the applicability of the theory to technical

relevant circuits.

For simulating the phase noise of oscillators a very good

model of the transistor and the passive network describing

the signal and noise behavior is essential. We therefore

developed a signal and noise model of a GaAs MESFET,

the NE7 10. The equivalent circuit of the MESFET (Fig.

2) has been obtained by S-parameter measurements at sev-

eral bias points.

A modified SPICE model [29], [30] was used to char-

acterize the nonlinearities of the MESFET used. The

white noise sources are thermal noise sources of the losses

or shot noise sources of the internal diodes of the transis-

tor [31]. The NF-noise power was measured for several

bias voltages and the 1/f “-nonlinear voltage-controlled

current noise source between drain and source was mod-

eled. The measured NF-noise power is depicted in Fig. 3

for a voltage of –0.7 V between gate and source and 3.0

V between-drain and source. -

The correlation spectrum of the 1/f “-noise

given by

Cf=
C(~GS, u~s) “ (10 kHZ)a

Ifntl” “

source is

(39)

The function c (U&$, U~s) denotes the spectral noise power

at a frequency of 10 kHz in dependence of the gate-source

and the drain-source voltage. The exponent a was ob-

tained by averaging the slope of the measured baseband

noise between 1 and 100 kHz over several bias points.

The linear circuit was designed with microstrip lines

for a frequency of oscillation at 14 GHz. The designed

circuit is shown in Fig. 4. A photograph of the oscillator

is shown in Fig. 5.

The spectrum of the output power measured with the

spectrum analyzer HP7 1000 is shown in Fig. 6 with a

maximum power of 12.85 dBm at 14.2 GHz. A 10 dB

attenuator was used at the input port of the spectrum ana-

lyzer.

The equivalent noise sources at the ports were simu-
lated with the linear network analysis program SANA

[32]. Hence the correlation matrices of all noise sources

are known. Applying Kirchhoffs voltage and current law

in order to obtain the system equations the matrix G (U!,
u) is automatically obtained if the noise sources are taken

into account in the equivalent circuit. The vector V, is

calculated by solving the linear system of equations J+ V,
= O with a standard LU-decomposition. As the numerical

differentiation of the Jacobian with respect to the fre-

quency is not sensitive to the choice of the frequency shift

a simple numerical differentiation algorithm can be used.

The noise power of the oscillator was measured with the
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Fig. 2. Equivalent circuit of the GaAs MESFET NE71O.
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Fig. 4. The oscillator circuit.

Hewlett Packard HP3048 noise measurement system by

using the frequency discriminator method [33]. We obtain

a single-sideband phase noise L (fm) of – 90 dBc /Hz at

~n = 100 kHz. The simulated and measured single-side-

band phase noise is depicted in Fig. 7, where only one

harmonic has been taken into account to simulate L (fm).

At small frequency deviations the single-sideband phase

2261

Fig. 5. Photograph of the oscillator.
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Fig. 6. The output spectrumof the oscillator.
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Fig. 7. Measured and, simulated single-sideband phase noise L (j~).

noise L ( f~) decreases at 33 dB /decade due to the mod-

eled factor CY= 1.3 of the 1 /~a noise source. L ($J de-

creases at 20 dB /decade due to the white noise sources

for a frequency deviation greater than 1 MHz. The devia-

tion of the simulated and the measured single-sideband
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phase noise is under 5 dB over the whole measured fre-

quency range from 1 kHz to 10 MHz. Another important

feature of our method is the low numerical effort to cal-

culate the noise behavior of oscillators. An HP9000 work-

station needs just about 6 s to calculate 50 points of the

single-sideband phase noise without any ‘optimization

done to minimize the computation time.
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V. CONCLUSION

We demonstrated a numerically stable method to sim-

ulate the single-sideband phase noise in free running mi-

crowave oscillators based on a piecewise harmonic bal-

ance technique. The prerequisites for the calculations are

that the steady state of the oscillator without the noise

sources describes a limit cycle of the oscillator in the phase

space and that the noise sources cause only small devia-

tions from the unperturbed solution. This method takes

the conversion of the baseband noise and the conversion

of the white noise sources to each harmonic into account.

The modulation of the noise sources due to the large-sig-

nal steady state are considered.

The procedure described above is also applicable to

calculate the amplitude phase correlation spectra and the

amplitude noise. These contributions are still taken into

account in (32) and can be calculated by choosing the
proper terms in the double sum.

The method has been applied to a planar integrated mi-

crowave oscillator at 14 GHz. A single sideband phase

noise of – 90 dBc /Hz at an offset frequency of 100 kHz

was obtained by using only microstrip lines at the gate

and source, as resonators. The difference of the simulated

and measured single-sideband phase noise lies within the

accuracy of measurements over the whole measured fre-

quency range between 1 kHz and 10 MHz. The method

proved to be a fast, reliable, and numerically stable tool

for the design of microwave oscillators.

ACKNOWLEDGMENT

The authors would like to express their appreciation to

Dr. F. X. Kartner for his encouragement and helpful dis-

cussions. The authors would also like to thank Dipl .Ing.

J. Schaffer and Dr. -Ing. V. Gi.ingerich for designing and

measuring the oscillator, and Ms. C. Peterschik, who fab-

ricated the oscillator.

REFERENCES

[1] T. J. Aprille and T. N. Trick, “A computer algorithm to determine
the steady-state response of nonlinear oscillators, ” IEEE Trans. Cir-
cuit Theory, vol. 19, pp. 354-360, 1972.

[2] L. O. Chua, Computer Aided Analysis of Electronic Circuits: Algo-
rithms & Computational Techniques. Englewood Cliffs, NJ: Pren-
tice Hall, 1975.

[3] M. Schwab, “Determination of the steady state of an oscillator by a
combined time-frequency method, ” IEEE Trans. Microwave Theory
Tech., vol. 39, pp. 1391-1402, Aug. 1991.

[4] S. K. Kundert and A. Sangiovanni-Vincentelli. Steady-State Methods
for Simulating Analog and Microwave Circuits. Boston: KluwerAc-
ademic, 1990.

[5] V. Rizzoli and A. Neri, “State of the art and present trends in non-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

of mixers with arbitrary topology including signal and noise proper-

ties, ‘‘ in Proc. IEEE MTT/AP Workshop Integrat. Nonlinear Micro-
wave, Millimeter Circuits (INMMC ’90) Dig., pp. 63-77, Duisburg,

1990.
P. Russer and S. Miiller, ‘ ‘Noise analysis of linear microwave cir-

cuits, ” Int. J. Numerical Modelling, vol. 3, pp. 287-316, 1990.
K. Kurokawa, “Some basic characteristics of broadband negative re-

sistance oscillator circuits, ” Bell Syst. Tech. J., vol. 48, pp. 1937-
1955, 1969.

— “Noise in synchronized oscillators, ” IEEE Trans. Microwave
The;ry Tech., vol. 16, pp. 234-240, Apr. 1968.
D. B. Leeson, “A simple model of feedback oscillator noise spec-

trum, ” Proc. IEEE, pp. 329-330, Feb. 1966.

F. X. Kartner, “Analysis of white and f ‘e noise in oscillators, ” Int.

J. Circuit Theory Applicat., vol. 18, pp. 485-519, 1990.

H. J. Siweris and B. Schick, “Analysis of noise upconversion in mi-
crowave FET oscillators, ” IEEE Trans. Microwave Theory Tech.,

vol. 33, pp. 233-242, Mar. 1985.
J. M. PailIot, J. C. Nallatamby, M. Hessane, R. Quere, M. Prigent,

and J. Rousset, “A general program for steady state, stability, and

FM noise analysis of microwave oscillators, ” in Proc. IEEE Symp.

MT’FS Dig., 1990, pp. 1287-1290, Dallas, TX.
D. N. Held and A. R. Kerr, <‘Conversion loss and noise of micro-
wave and millimeter wave mixers: Part 1—Theory, ” IEEE Trans.
Microwave Theory Tech., vol. 26, pp. 49-55, Feb. 1978.

[18] A. R. Kerr, “Noise and loss m balanced and subharmonically pumped

mixers: Part l—Theory, ” IEEE Trans. ~icrowave Theory Tech., vol.
27, pp. 938-943, Dec. 1979.

[19] V. Rizzoli, F. Mastri, and C. Cecchetti, “Computer-aided noise

analysis of MESFET and HEMT mixers, ” IEEE Trans. Microwave
Theory Tech., vol. 37, pp. 1401-1410, Sept. 1989.

[20] S. Heinen, J. Kunisch, and I. Wolff, “A unified framework for com-
puter-aided noise analysis of linear and nonlinear microwave cir-

cuits, ” IEEE Trans Microwave Theory Tech., vol. 39, pp. 2170-
2175, Dec. 1991.

[21] W. Anzill, F. X. Kartner, and P. Russer, ‘ ‘Slmulatlon of the phase
noise of oscillators in the frequency domain, ” Archivftir Elektronik

und ~bertragungst.chnik (AEU), Int. J. Electron., Commun., 1993.

[22] A. I. Mees, “Limit Cycle Stability, ” J. Institut. Maths Applicat.,
vnl. 11 nn 281-295, 1973.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

--, rr.
F. X. Kartner, “Noise in oscillating systems, ” in Proc. IEEE MTT/
AP Workshop Integrat. Nonlinear Microwave, Millimeter Wave Cir-
cuits (INMMC ‘92), Duisburg, 1992, pp. 61-75.

W. Anzill, F. X. Kartner, and P. Russer, ‘ ‘Simulation of the single-

sideband phase noise of oscillators, ” in Proc. IEEE MTT/AP Work-

shop Integrat. Nonlinear Microwave, Millimeter Wave Circuits
(INMMC ‘92), Duisburg, 1992, pp. 97-110.
J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford: Clar-
endon, 1988.

R. Bulirsch and J. Steer, Introduction to Numerical Analy.ris. New
York: Springer Verlag, 1980.
G. H. Golub and C. T. van Loan, Marri.x Compurarions. Baltimore,
MD, London: The Johns Hopkins Univ. Press, 1989.
V. Gungerich, R. Schadel, R. Ramisch, and P. Russer, “A process
for inserting chips into planar microwave structures on semiconductor

substrates, ” J. Microelectron. Eng., vol. 18, pp. 247-252, 1992.
W. R, Curtice and M. Ettenberg, C‘A nonlinear GaAs-FET model for
use in the design of output circuits for power amplifiers, ” IEEE Trans.
Microwave Theory Tech., vol. 33, pp. 1383-1394, Dec. 1985.

H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus,

‘ ‘GaAs FET device and circuit simulation in Spice. ” ZEEE Trans.
Electron Devices, vol. ED-34, pp. 160-169, Feb. 1987.

C. Dragone, “Analysis of thermal and shot noise in pumped resistive
diodes, ” Bell Syst. Tech. J,, vol. 47, pp. 1883-1902, Nov. 1968.
SANA Manual. RTI GmbH, Munich, 1989.
HP Product Note 11729C-2: Phase Noise Characterization of Micro-

wave Oscillators. Hewlett Packard, Palo Alto, CA, Sept, 1985,



ANZILL AND RUSSER: METHOD TO SIMULATE NOISE IN OSCILLATORS 2263

Werner Anzill (S ’92) was born in Freiburg, Ger-

many, in 1965. He received the Dipl. Ing. degree

at the Technische Universitat in Miinchen, Ger-

many in 1990.
Since then he has been” working at the Lehrstuhl

fur Hochfrequenztechnik at the Technische Uni-

versitat, Miinchen, in the field of noise in nonlin-
ear circuits and is currently pursuing the Ph.D.
degree.

Peter Russer (SM’81) was born in Vienna, Aus-

tria, in 1943. He received the Dipl. -Ing. degree
in 1967 and the Dr. Tech. degree in 1971, both in

electrical engineering and both from the Tech-
nische Universitat, Vienna, Austria.

From 1968 to 1971 he was an Assistant Profes-
sor at the Technische Universitat in Vienna. In
1971 he joined the Research Institute of AEG-
Telefunken, Ulm, Germany, where he worked on
fiber-optic communication, high-speed solid-state

electronic circuits, laser modulation, and fiber-

optic gyroscopes. In 1979 he was corecipient of the NTG award. Since

1981 he has held the chair of Hochfrequenztechnik at the Technische Uni-

versitat Mihrchen, Germany. Since 1992 he has been also the Director of

the Ferdinand-Braun-Institut fur Hochstfrequenztechnik,’Berlin, Gemlany.

His current research interests are microwave circuits, methods for com-
puter-aided design of microwave circuits, electromagnetic fields, statistical

noise analysis of microwave circuits, integrated microwave and millime-
terwave circuits and microwave oscillators. He is the author of more than

150 papers in these areas.
Dr. Russer is a member of the German Informationstechnische Gcsell-

schaft and the Austrian and German Physical Societies. In 1990 he was a
Visiting Professor at the University of Ottawa, Canada.


