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A General Method to Simulate Noise in Oscillators
Based on Frequency Domain Techniques

Werner Anzill and Peter Russer

Abstract—A perturbation theory for simulating the noise be-
havior in free running microwave oscillators based on a piece-
wise harmonic balance technique is outlined. The single-side-
band phase noise of an oscillator is derived from the system
equations describing the deterministic and stochastic behavior.
The method is neither limited to a certain circuit topology nor
to certain types of noise sources. The theory is applied to a
planar integrated microwave oscillator at 14 GHz to demon-
strate the applicability of the theory. Simulated and measured
single-sideband phase noise agree within the accuracy of mea-
surement.

I. INTRODUCTION

HE SIMULATION of the spectral behavior of micro-
wave and millimeter-wave circuits is of fundamental
importance due to the technology of monolithic integra-
tion and the limitations of tuning the circuit after its in-
tegration. Besides the signal properties the noise behavior
is essential for the design of microwave oscillators. While
the determination of the steady state of oscillators in the
time and frequency domain is state of the art [1]-[5] and
already implemented in modern computer-aided design
tools, this is not so for the simulation of the noise behav-
ior. For signal and noise analysis of linear circuits the
correlation method is used [6]-[10]. These methods are
not suitable to analyze oscillator circuits, since the non-
linearities affect the output characteristics of an oscillator.
A traditional technique to describe noise in oscillating
systems [11], [12] is based on an approximation of a
slowly varying envelope of the oscillator signal. Closed
formulas for the steady state and for the noise spectra of
oscillators can be found and a good qualitative and some-
times quantitative understanding of the noise behavior is
achieved. But the applicability of the theory is restricted
to simplified oscillator models, e.g., Van der Pol oscil-
lators. A model of a linear feedback oscillator is used in
[13] and a formula for the phase noise is derived with the
noise figure of the transistor, the signal power and the
loaded quality factor of the resonator as the characteris-
tics. In both methods noise spectra are derived from a
linearized, i.e., small-signal analysis, despite the fact that

Manuscript received March 25, 1993; revised June 16, 1993. This work
was supported by the Deutsche Forschungsgemeinschaft.

W. Anzill is with the Lehstuhl fur Hochfrequenztechnik, Technische
Unjversitit, 8000 Miinchen 2. Germany.

P. Russer is with the Lehrstuhl fiir Hochfrequenztechnik, Technische
Universitit. Miichen and with the Ferdinand-Braun-Institut fur Hochstfre-
quenztechnik, O-1199 Berlin, Germany.

IEEE Log Number 9213000.

a stable oscillation is only possible in a nonlinear system.
Therefore the conversion of a baseband noise to the har-
monics and the modulation of the noise sources by the
large-signal steady state are determined from a small-sig-
nal analysis.

A method to calculate the general correlation spectrum
of oscillators in the time domain with white and f~*-noise
sources has already been published [14]. The oscillator
circuit is described by a lumped circuit model containing
the inherent noise sources of the oscillator. This method
is based on the solution of the Langevin equations, which
describe the stochastic behavior. There are no restrictions
on the complexity and the nonlinearities contained in the
model. The modulation of the noise sources by the un-
perturbed oscillation are taken into account.

For microwave oscillators with distributed elements,
mainly frequency domain methods are used due to the dif-
ficulty of describing distributed elements in the time do-
main. The calculation of the oscillator’s noise behavior in
the frequency domain is based on conversion matrices
[15], [16], as used for mixers [17]-[20]. The noise signals
are described as a superposition of several sinusoidal time
functions with different frequencies. The shortcoming of
[15] is that only the fundamental frequency of the signal
is taken into account and in [16] the nonlinear noise cur-
rent sources are connected across the nonlinearities that
are only one-ports. Both methods require an inversion of
the conversion matrix that is ill conditioned in the vicinity
of the steady state and the frequency of oscillation. This
is an inherent problem of oscillators due to the lack of
phase reference. Therefore the phase noise computations
of complex oscillators, which have to be done numeri-
cally, turn out to be very sensitive to numerical errors.

We propose an approach based on a piecewise har-
monic balance technique to calculate the single-sideband
phase noise of oscillators that is neither limited to a cer-
tain kind of topology of the circuit nor to special charac-
teristics of the noise sources. In particular, the technically
important computation of the oscillator noise spectra near
the frequency of oscillation is an inherently ill condi-
tioned problem when performed by direct inversion of the
corresponding linearized equations [21]. In oscillators the
noise sources are small compared with the signals, if the
oscillator is not operated in the neighborhood of a bifur-
cation point. Therefore, the system equations are linear-
ized around the steady state. Due to the lack of phase ref-
erence in oscillators the resulting Jacobian is singular at
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the steady state [22] and ill conditioned for a small fre-
quency deviation from the carrier frequency, where we
are interested in the phase noise. We overcome this prob-
lem by using an eigenvalue decomposition of the Jaco-
bian, where the small eigenvalue responsible for the bad
condition of the matrix is taken into account. The corre-
lation spectrum of the state variable fluctuations is de-
rived, where the phase noise, the amplitude noise, and the
amplitude phase correlation spectrum are included. The
phase noise is generated by a random phase shift of the
unperturbed steady-state signal. Since in oscillators the
phase noise is the dominant noise phenomenon we con-
sider only the phase noise correlation spectrum. A simple
equation for the simulation of the single-sideband phase
noise L( f,,) can be derived that allows to compute L( f,,)
in a numerically stable way [23], [24].

In Section II of this paper we formulate the system
equations describing the steady state. The method of the
noise analysis is outlined in Section III and an expression
for the single-sideband phase noise is derived. In Section
IV we apply the theory to a planar integrated free running
microwave oscillator at 14 GHz.

II. STEADY STATE

To analyze the noise behavior of oscillators we first
compute the steady state without the noise sources. As
usual for the piecewise harmonic balance method the cir-
cuit is divided into a nonlinear and a linear subcircuit. The
nonlinear subcircuit is described by the admittance or
impedance matrix. The n components of the vector X are
the n state variables that.uniquely determine the state of
the nonlinear circuit connected with the admittance or
impedance of the linear circuit. )

X=X X, - X). ey
Each state variable is considered to be periodic at the
steady state. Hence x;(¢) is expressed by a Fourier expan-
sion with the coefficients X, ;. The frequency range con-
sidered is limited to k harmonics,
X; =X« Xi«+1 "7 Xpo "
Cc%*+1

X, 0" @)

where X; €

Applying Kirchhoff’s current and voltage law we obtain
a set of n nonlinear equations F (X, w) for the state vari-
ables X and the frequency of ‘oscillation w. The steady
state is defined by the nonlinear system equation

F(X°, wp) = 0. (3)

This nonlinear system of equations (3) has an infinite
number of solutions X°, because the phase of oscillation
is arbitrary for free running oscillators. To obtain a unique
solution the phase has to be fixed by choosing a real or
imaginary part of a Fourier coefficient to be zero,

III. NOISE ANALYSIS
A. Fluctuations of the State Variables

Taking the noise sources into account, we obtain a non-
linear system of equations including noise.

2257

FX7, o, Np = 0. “4)

The noise vector Ny consists of » noise sources at & har-
monics, so that Ny € C"®*D_ This system of equations
is described in detail for a nodal harmonic balance system
in [21}], [24]. We use an ansatz where all Fourier coefli-
cients and the frequency of oscillation are noisy and there-
fore all possible noise processes including the upconver-
sion of 1 /f“ noise sources and the AM to PM conversion
can be taken into account. The index T denotes the time
windowed signals as amplitude spectra of random signals
may only be defined for time limited probes of the signals
[10]. Calculation of the correlation spectra T — oo has to
be performed again after the ensemble averaging.

In electrical oscillators noise signals are very small
compared with the state variables. Therefore it is suffi-
cient to take the noise sources into account up to first or-
der,

F(XT7 w) + G(Xo, O)) . NT = () (5)
where G(Xg, w) € CM+DXrk+1) 5p g
OF Xp,
G(XO, w) = M . (6)
aNT XT=X?«,NT=0

The matrix G (X%, ) denotes the contribution of the noise
sources N to each equation in (5).

Due to the small noise signals the state variables and
the frequency of oscillation deviate only by a small
amount from the steady state,

Xr() = X7(w) + 8X7();
l8Xr@l << 1X7)|; (7)

Thus the system of nonlinear equations can be linearized
around the steady state,

w = wy + w,

w,, << wg.

J(X3, )Xy + G (X7, &)Nr = 0 ®)
with J(X% w)€E O+ DX n@k+1) 404
oF (X,
IXw) = TEn @) o
Xr Iy

The matrix J (X3, ) represents the Jacobian that contains
all information about the noise signals mixed with the
spectral components of the state variables X9. The Jaco-
bian is singular at the steady-state X9 and wy. That means
one eigenvalue is zero, which is denoted A; = 0. There-
fore a distortion 8X; exists, that X3 + 86X is also a so-
lution of (3). In other words X% + 86X deviates from the
steady-state solution of the oscillator only by a small phase
shift. These stochastic phase deviations constitute the
phase noise.

B. Solution of the System Equations Including Noise

The Jacobian is singular at the steady state and for a
small frequency deviation f,, of the carrier frequency the
deviations of the matrix elements are small and the con-
dition number of the Jacobian remains high [25]. The
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condition number of a matrix can be approximated by the
ratio of the largest to the smallest eigenvalue. The largest
eigenvalue is much larger than the frequency of oscilla-
tion f;, because it is related to the fastest process of the
system. The smallest eigenvalue is in the order of the fre-
quency deviation f,,, as we will show later in (27). There-
fore the condition number cond of the Jacobian is much
larger than the ratio of the carrier frequency to the fre-
quency deviation of interest [23].

fo
fm‘

That means the steady state of oscillators has to be deter-
mined to a much higher precision than the inverse of the
condition number to achieve a relative error smaller than
1 [26]. Considering a 10 GHz oscillator and a frequency
deviation of, e.g., f,, = 10 kHz the condition number is
much larger than 10°.

To overcome the numerical problems the Jacobian is
linearized at the carrier frequency with respect to the fre-
quency

cond (J[IX% 27 (f + f£)]) >> (10)

JXE, @) = JXT, wg) + wp - Jo(XF, wp) (1)
with abbreviation
0
Jw(XO, wy) = M (12)
ow 0= 0

Then, an eigenvalue decomposition [27] of the Jacobian
with left- and right-sided eigenvectors is used. Thus the
complete correlation spectra can be calculated in a nu-
merically stable way.

First we want to analyze the unperturbed Jacobian
J(X9, wp). The left- and right-sided eigenvectors of the
Jacobian are denoted with V, and W, and the eigenvalues
with \; and A; respectively.

Vj+ * J(X% wO) = )\]V : VJ+; (13)
JX3, wo) - W, = N - W, (19)

The eigenvalues of the Jacobian are equal for a set of left-
and right-sided eigenvectors.

N =N =\ (15)

The left- and right-sided eigenvectors satisfy the ortho-
gonality relations [25]:

nQk+ 1)
VeC

Wi e Cn(2k+1).
fori = j.

V- W, =4, with §, = {1 l ]. (16)
0 i #j.

These equations mean, e.g., the eigenvector V, is ortho-
gonal to all right-sided eigenvectors W; with the excep-
tion of W,. The eigenvectors corresponding to the eigen-
value A; = 0 are denoted with V, and W,. These are the
eigenvectors that we will need later on.

The eigenvector W, is determined by the steady state
[21], [24].

W, = ju KX? 17
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where K e R"k+ D xn@k+1) 44 3 matrix that has only non-

vanishing diagonal elements consisting of the number of
the harmonics.

—k
-k -1 0

+k

(18)

The physical meaning of the vectors V; and W is il-
luminated in the time domain; see Fig. 1.

w, () O—® W, is the tangent vector to the steady-
state x°(¢) and v, (f) O—® V| is the normal vector de-
fining a plane 4 that is mapped onto itself by the unper-
turbed flux of the linearized set of differential equations
(Poincaré map), see [14].

The vector V, is determined by the definition

XY w) -V, =0 (19)

which is a linear homogeneous system of equations and
can be solved with a standard LU-decomposition. The
length of the vector V, has to be normalized to satisfy
(16).

”V1“2 = ||wOKX(}||2_1 20

The eigenvectors W, are a complete base of the state
space and due to (16) a multiplication of V; with a vector
within the state space is a projection onto the comple-
mentary space of the plane «#. That means, the projection
operator W, V| applied to a vector, e.g., named z =
I'_ 1 a; W, results in a vector tangential to the limit cycle
with a length of the coefficient a;. So if this projection
operator W,V is applied to the noise sources in the state
space G (X5, w) Ny the contributions of the noise sources
that cause a phase shift of the unperturbed steady state are
separated. This will be shown by an algebraic derivation
in the following part of the paper.

For a small frequency deviation of w,, = 27 f,, the de-
viations of the elements of the Jacobian are small. There-
fore the deviations of the cigenvalues and eigenvectors
are small too, because they are continuous functions of
the matrix elements [27].

Vj/+ = Vf + 5VJ+§ ”5VJ||2 < ijnz (22)
Wi =W, + W, oW, ll, < [[Wl,. (23)

The eigenvalues and eigenvectors of the perturbed Jaco-
bian J(X3, w) are denoted with a prime. It is sufficient to
consider the deviations of the eigenvalues and eigenvec-
tors up to the first order in w,,.
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Fig. 1. Two-dimensional phase space with a limit cycle and eigenvectors
v,(#) and w, (1). '

N = w0, Vi 3, (X3, wo) W,
n(2k+1) W
oW, = 2 =
! l=1,l$i)\i—)\l
: Vwa(Xo’ wO)Wi * Wl
nk+ 1) ©
&V, = 2 =
Vi I=11#j N — N
* VI XT, w)W, - V. (26)

Therefore the eigenvalue A of the perturbed Jacobian
J(X?, w) is given with (17) by

N = 0\ = 2af, Vi J, (X, w0) 27 KXT.  (27)
The inverse of the Jacobian J ™' (X}, w) is represented by
an eigenvalue decomposition with the eigenvalues and

left- and right-sided eigenvectors of the Jacobian Jx,
).

4

@5

n
'S o) = 2 iw;v;*. (28)
i=1 N

This inversion will not be calculated due to the bad con-
dition of the Jacobian. We derive this equation to calcu-
late the correlation spectrum of the state variable fluctua-
tions. Later on we take into account the special eigenvalue
A} that causes the bad condition of the matrix and the
problems of a numerical inversion. The state variable
fluctuations are given by

nk+D

Xp= 2 —WIVIF - (=GX° w)Ny.

i=1 N 29)

C. Correlation Spectrum of the Oscillator Noise

The correlation spectra of the state variables C*(f)
and the noise sources CV(f) are given by

CH(f) = Jim 5= BXA(HBXE()  (O)
T+ oo

C'(f) = lim = (NH(HINF(D
T— oo

where the brackets denote the ensemble average. The cor-

relation spectra of the state variables are derived using

(30), (31) and the equation of the state variable fluctua-

tions (29)

31

n(2k + 1) n(2k + 1)
Ci(hH= 2 2 /NN
FVITCH(HY;

CWIWT (3D

with abbreviation
CN(f) = GXL ) CV(HGT X}, w). . (33)

The approximations of (24)-(26) for the eigenvalues and
eigenvectors of the perturbed Jacobian are used to derive
the correlation spectra of the sta: variable fluctuations.
The term with the major contribution to the correlation
spectrum is the term with i = j = 1 due to the small
eigenvalue A] = 8\, given in (27). This term denotes, as
already described, the phase noise of oscillators. As the
periurbation of the eigenvectors 6W; and 6V, are in the
order of w,, and therefore small compared with the unper-
turbed eigenvectors, they are negligible.

Vi CN(f)V, - KX’X**K
Q) Vi L. X0, w) KX

Due to the special situation of the eigenvalue A] and the
eigenvectors V; and W, the terms with i = 1 and j # 1
ori # 1 and j = 1 in (32) denote the amplitude phase
correlation spectra. Finally the terms with i # 1 andj #
1 in (32) represent the amplitude noise. These noise con-
tributions are small compared with the phase noise due to
the larger cigenvalues and are not taken into account in
this paper.

c¥(f) = (34)

D. Single-Sideband Phase Noise L( f)

The single-sideband phase noise L( f,,) is the ratio be-
tween the noise power in a sideband of bandwidth 1 Hz
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at a deviation f,, = f — f; from the carrier frequency and
the total signal power Pg. L( f,,) is equal for all state vari-
ables and therefore we can choose any state variable x, to
calculate the single-sideband phase noise.

L(fw) = Pxi(f)/Ps. (35

In order to obtain the single-sideband phase noise at the
fundamental frequency the matrix element corresponding
to the ith state variable is chosen that denotes the noise
power at the fundamental frequency. We have to select
the element X} X% = |X?,|? of the matrix KX°X°*K
and obtain for the noise power Py;(f,,) in a 1 Hz band-
width

Py (f)

2C5X(f(~) + fm)i,l : Ru =
. VTCGN(ﬁ) +fm)V1 i I‘X?,ll2 i Ru
@ f) VT 3, (X°, wo) KX
R, is a resistance of normalization. The signal power of
the fundamental frequency is represented by
Ps = 2|X0.|* - R, (37)

With the definition of the single-sideband phase noise in
(35) we derive an equation for L( f,,) using the approxi-
mations of the noise power (36) and the signal power (37).

(36)

L ViC%f + f Vi
erf)’ Vi, X0, 27 f) KXO)2

V, is the solution of a homogeneous linear system of
equations, J* (UO, 27 fy) V; = 0, which can be obtained
very easily with a standard LU-decomposition of the Ja-
cobian. The derivative of the Jacobian with respect to the
frequency J, (U°, 27f;) can be calculated numerically, as
we will show in our example. The denominator of the
second term is constant for different frequency deviations
and needs to be calculated only once. The numerator con-
sists of the correlation spectrum of the noise sources mul-
tiplied with the vector V; from the left side and with V,
from the right side. As we already described, this multi-
plication is a projection of all noise sources of the state
space onto the tangent vector to the steady state. That
means the vector V; selects the contributions of the noise
sources that are tangential to the steady state and therefore
induce the phase noise.

The noise sources, 1/f - and white noise sources. and
their modulation are taken into account in the correlation
matrix C?, The correlation spectrum of a 1 /f “-noise
source decreases with (10 - «) dB /frequency decade and
therefore L ( f,,) decreases at [20 + (10 - «)] dB/decade.
The single-sideband phase noise decreases at 20
dB/decade due to the white noise sources, because the
correlation spectra of white noise sources are constant with
respect to the frequency.

This method results in a numerical stable calculation of
the phase noise of free running oscillators, where all ef-
fects of the noise sources converted with the harmonic
signals are taken into account.

L(fw) = 38)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 12, DECEMBER 1993

IV. EXAMPLE

A. Simulation and Measurement of the Single-Sideband
Phase Noise of a Planar Integrated Microwave
Oscillator at 14 GHz

This new method is applied to a planar [28] integrated
microwave oscillator with a GaAs MESFET at 14 GHz to
demonstrate the applicability of the theory to technical
relevant circuits.

For simulating the phase noise of oscillators a very good
model of the transistor and the passive network describing
the signal and noise behavior is essential. We therefore
developed a signal and noise model of a GaAs MESFET,
the NE710. The equivalent circuit of the MESFET (Fig.
2) has been obtained by S-parameter measurements at sev-
eral bias points.

A modified SPICE model [29], [30] was used to char-
acterize the nonlinearities of the MESFET used. The
white noise sources are thermal noise sources of the losses
or shot noise sources of the internal diodes of the transis-
tor [31]. The NF-noise power was measured for several
bias voltages and the 1/f*-nonlinear voltage-controlled
current noise source between drain and source was mod-
eled. The measured NF-noise power is depicted in Fig. 3
for a voltage of —0.7 V between gate and source and 3.0
V between drain and source.

The correlation spectrum of the 1/f*-noise source is
given by

¢(Ugs, Ups) - (10 kHz)*
| ful®

The function ¢ (Ugs, Upg) denotes the spectral noise power
at a frequency of 10 kHz in dependence of the gate-source
and the drain-source voltage. The exponent o« was ob-
tained by averaging the slope of the measured baseband
noise between 1 and 100 kHz over several bias points.

The linear circuit was designed with microstrip lines
for a frequency of oscillation at 14 GHz. The designed
circuit is shown in Fig. 4. A photograph of the oscillator
is shown in Fig. 5.

The spectrum of the output power measured with the
spectrum analyzer HP71000 is shown in Fig. 6 with a
maximum power of 12.85 dBm at 14.2 GHz. A 10 dB
attenuator was used at the input port of the spectrum ana-
lyzer.

The equivalent noise sources at the ports were simu-
lated with the linear network analysis program SANA
[32]. Hence the correlation matrices of all noise sources
are known. Applying Kirchhoff’s voltage and current law
in order to obtain the system equations the matrix G (U,
w) is automatically obtained if the noise sources are taken
into account in the equivalent circuit. The vector V; is
calculated by solving the linear system of equations J* V,
= 0 with a standard LU-decomposition. As the numerical
differentiation of the Jacobian with respect to the fre-
quency is not sensitive to the choice of the frequency shift
a simple numerical differentiation algorithm can be used.
The noise power of the oscillator was measured with the

c/=

(39)
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Fig. 3. NF-noise measurement with Ugs = —0.7 V and Ups = 3.0 V.
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Fig. 4. The oscillator circuit.

Hewlett Packard HP3048 noise measurement system by
using the frequency discriminator method [33]. We obtain
a single-sideband phase noise L(f,) of —90 dBc/Hz at
fn = 100 kHz. The simulated and measured single-side-
band phase noise is depicted in Fig. 7, where only one
harmonic has been taken into account to simulate L( f,,).

At small frequency deviations the single-sideband phase

] Fogp | [Clu
as1I

2261

" Fig. 5. Photograph of the oscillator.
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Fig. 7. Measured and simulated single-sideband phase noise L( f,,).

noise L( f,,) decreases at 33 dB/decade due to the mod-
eled factor o = 1.3 of the 1/f“ noise source. L( f,,) de-
creases at 20 dB /decade due to the white noise sources
for a frequency deviation greater than 1 MHz. The devia-
tion of the simulated and the measured single-sideband
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phase noise is under 5 dB over the whole measured fre-
quency range from 1 kHz to 10 MHz. Another important
feature of our method is the low numerical effort to cal-
culate the noise behavior of oscillators. An HP9000 work-
station needs just about 6 s to calculate 50 points of the
single-sideband phase noise without any optimization
done to minimize the computation time.

V. CONCLUSION

We demonstrated a numerically stable method to sim-
ulate the single-sideband phase noise in free running mi-
crowave oscillators based on a piecewise harmonic bal-
ance technique. The prerequisites for the calculations are
that the steady state of the oscillator without the noise
sources describes a limit cycle of the oscillator in the phase
space and that the noise sources cause only small devia-
tions from the unperturbed solution. This method takes
the conversion of the baseband noise and the conversion
of the white noise sources to each harmonic into account.
The modulation of the noise sources due to the large-sig-
nal steady state are considered.

The procedure described above is also applicable to
calculate the amplitude phase correlation spectra and the
amplitude noise. These contributions are still taken into
account in (32) and can be calculated by choosing the
proper terms in the double sum.

The method has been applied to a planar integrated mi-
crowave oscillator at 14 GHz. A single sideband phase
noise of —90 dBc /Hz at an offset frequency of 100 kHz
was obtained by using only microstrip lines at the gate
and source as resonators. The difference of the simulated
and measured single-sideband phase noise lies within the
accuracy of measurements over the whole measured fre-
quency range between 1 kHz and 10 MHz. The method
proved to be a fast, reliable, and numerically stable tool
for the design of microwave oscillators.
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